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Abstract

We present several results on homogeneous spaces of reductive Lie groups and on the actions of

such groups on complex manifolds. In particular, we consider weakly symmetric spaces in the

sense of A.Selberg, spherical varieties, and their complex analytic counterparts. The results are

motivated by geometric representation theory. The proofs are based on the properties of the Weyl

involution.

1. Let G be connected Lie group, H ⊂ G a compact subgroup, and M = G/H the
corresponding homogeneous space with the base point x0 = e · H ∈ M . The action
G × M → M is assumed to be effective. Thus G is identified with some group of
diffeomorphisms of M . There is a G-invariant metric on M and, for any such metric,
G is contained if the connected component of the isometry group of M . However, no
choice of an invariant metric is required. The homogeneous space M is called weakly
symmetric (with respect to G) if there exists a diffeomorphism s : M → M , such that:

(1) sGs−1 = G;

(2) s2 ∈ G;

(3) ∀ x, y ∈ M ∃ g ∈ G : gx = sy, gy = sx.

It is easy to see that if (1) is fulfilled and (3) holds for some x, y ∈ M then (3) also
holds for hx, hy with arbitrary h ∈ G. Thus, if M is symmetric and G is the connected
isometry group of M , then one can take for s the geodesic symmetry at x0. This
shows that a symmetric space is weakly symmetric. The diffeomorphism s in (2) is not
uniquely defined and, in all known examples, s can be chosen to be involutive.

The notion of a weakly symmetric homogeneous space was introduced by A.Selberg
(1956) in connection with his celebrated trace formula. A.Selberg proved that for a
weakly symmetric space M the algebra D(M)G of G-invariant differential operators is
commutative. This was the only property, essential for his proof of the trace formula,
and so he explicitly mentioned in the inroduction to [9] that he does not know whether
the assumption of weak symmetry is necessary for commutativity of D(M)G. We will
refer to this as Selberg’s question. In the same paper, A.Selberg constructed the first
example of a weakly symmetric space, which is not symmetric. Namely, he showed
that the unit tangent bundle over the Lobachevsky plane Λ2 is weakly symmetric with
respect to G = PSL(2, R) × SO(2), where PSL(2, R) is the isometry group of Λ2 and
SO(2) acts by simultaneous rotations in all tangent planes.

2. Let G be a connected reductive algebraic group over C, which will be identified with
the group of its complex points. A normal algebraic G-variety X is called spherical if a
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Borel subgroup of G has an open orbit on X. For X affine this is the case if and only
if the algebra of regular functions C[X] is a multiplicity free G-module. An algebraic
subgroup H ⊂ G is called spherical if the homogeneous space G/H is a spherical variety.
The notion of a spherical variety has been carried over to the category of complex spaces.
Namely, let G be a connected real Lie group, which is a real form of G in the following
sense. The group G is embedded as a closed subgroup in G and the (real) Lie algebra
g = Lie(G) satisfies g ⊕ ig = Lie(G). Suppose that Y is a normal complex space on
which G acts by holomorphic transformations. Then G acts on Y locally, and so Lie(G)
is represented by holomorphic vector fields on Y . The complex space Y is said to be
spherical with respect to G if there exists a point y ∈ Y , such that the holomorphic
tangent space at y is generated by vector fields from a Borel subalgebra of Lie(G).
Furthermore, if Y is contained as a G-invariant domain in a normal Stein space X
acted on by G then X is in fact an affine spherical G-variety; see [2]. Moreover, if G is
compact and Y is itself Stein, then by a result of [3] one can always find a G-equivariant
open embedding Y ↪→ X. Here are some examples of complex spherical spaces which
can serve as a motivation in the non-algebraic setting. The proofs for 2) and 3) can be
found in [2].

1) Let P ⊂ G be a parabolic subgroup, X = G/P the corresponding flag variety.
Any open G-orbit in X is a spherical complex manifold of G.

2) Let D be a bounded symmetric domain in Cn and let K be the isotropy subgroup
at some point o ∈ D. Then D is a spherical complex manifold with respect to K.

3) Even if a complex manifold is acted on by a complex Lie group, there are
interesting non-algebraic examples of spherical complex spaces. A compact complex
homogeneous space X of a complex reductive algebraic group is spherical if and only if
X is a locally trivial fiber bindle over a flag variety with a complex torus as fiber.

3. Forty years after Selberg’s paper, J.Lauret constructed in [8] an example of a ho-
mogeneous space with compact isotropy subgroup, which has commutative algebra of
invariant differential operators, but is not weakly symmetric. In his example, the tran-
sitive group is a semidirect product G = K nN , where K is compact and N is nilpotent
of class 2. Thus, the answer to Selberg’s question is in general negative. However, it
was shown in [5] that the answer for reductive groups is positive. More precisely, we
have the following two theorems.
Theorem 1. Let G and H ⊂ G be complex reductive algebraic groups, defined over R.
Assume that G is connected and H(R) is compact. Let G be the connected component
of G(R) and let H = G ∩ H(R). Then M = G/H is a weakly symmetric homogeneous
space if and only if X = G/H is a spherical variety.
Theorem 2. If G and H are as in Theorem 1 then M = G/H is weakly symmetric if
and only if the algebra D(M)G is commutative.
Sketch of proof of Theorem 2. Consider the algebra of algebraic differential operators
on X = G/H, to be denoted Dalg(X), and its subalgebra Dalg(X)G consisting of all
G-invariant operators. Since M is embedded into X as a totally real submanifold of
maximal dimension, it is easy to show that the algebras D(M)G and Dalg(X)G are iso-
morphic. It is known that C[X] is an irreducible Dalg(X)-module. By Jackobson’s Den-
sity Theorem, for any linearly independent u1, . . . , un and arbitrary v1, . . . , vn in C[X]
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there exists D ∈ Dalg(X), such that Dui = vi for all i, i = 1, . . . , n. Assume now that M
is not weakly symmetric and so, by Theorem 1, X is not spherical. Let {p1, . . . , pn} and
{q1, . . . , qn} be bases of two distinct G-submodules in C[X] with the same representation
matrices. Then there exists D1 ∈ Dalg(X) with D1(pi) = αpi, D1(qi) = βqi, α 6= β.
Also, there exists D2 ∈ Dalg(X) with D2(pi) = qi, D2(qi) = pi. By unitary trick, we
may assume that D1, D2 are G-invariant. Obviously, D1 and D2 do not commute. �

3. For the future use we recall the definition of a Weyl involution. We give the definition
for connected complex reductive groups, but it goes along the same lines for connected
compact Lie groups. An algebraic involution θ : G → G is called a Weyl involution if
θ acts as inversion on a maximal torus in G. For any G a Weyl involution exists and
is unique up to conjugation by an inner automorphism. A Weyl involution transforms
a G-module into the dual G-module. A Cartan involution of G is an antiholomorphic
involution whose fixed point subgroup is a maximal compact subgroup of G. One can
always find a Cartan involution τ , commuting with the given Weyl involution. Their
product σ = τθ = θτ is an antiholomorphic involution defining the split real form of G.

The main technical tool used in [5] for the proof of Theorem 1 is the construction
of a Weyl involution of G, which preserves a given reductive spherical subgroup H ⊂ G
and acts as a Weyl involution on the connected component H◦ ⊂ H. The proof is
based on the classification of reductive spherical subgroups. As a corollary, one has the
following result, which is useful in the analytic setting.

Theorem 3. Let G be a connected complex reductive group and let H ⊂ G be a
reductive spherical subgroup. Then there exist a Weyl involution θ : G → G and a
Cartan involution τ : G → G, such that θτ = τθ, θ(H) = H, and τ(H) = H. Moreover,
θ and τ restricted to H◦ are precisely a Weyl involution and a Cartan involution of H◦.

Proof. Let L be a maximal compact subgroup of H and let K be a maximal compact
subgroup of G that contains L. Then K is the fixed point subgroup of some Cartan
involution τ : G → G. By a result of [5], there is a Weyl involution θ : K → K, such
that θ(L) = L and θ induces a Weyl involution of the connected component L◦. For
any k ∈ K we have θτ(k) = θ(k) = τθ(k) by the definition of τ . Denote again by θ
the unique extension to G of the given Weyl involution. Since G is connected and the
relation θτ(g) = τθ(g) holds on K, it also holds on G. Finally, L◦ is a maximal compact
subgroup in H◦, and so θ|H◦ is a Weyl involution. �

4. Let Y be an irreducible reduced complex space on which a compact Lie group K
acts continuously by holomorphic transformations. J.Faraut and E.G.F.Thomas gave a
simple geometric condition which implies that the function algebra O(Y ) is a multiplicity
free K-module; see [6]. Namely, if there exists an antiholomorphic involution µ : Y → Y
with the property that, for every y ∈ Y , the orbit Ky is preserved by µ as a set then
O(Y ) is multiplicity free. In fact, the setting in [6] is more general. The authors
consider any, not necessarily compact, group of holomorphic transformations of Y and
study invariant Hilbert subspaces of O(Y ). A simplified proof for compact groups is
found in [4]. Our goal is to prove a converse theorem for a special class of complex
spaces. The example of a trivial action on a compact complex manifold shows that this
cannot be true in general. However, we have the following preparatory result from [4]
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for complex spaces with sufficiently many holomorphic functions.
Theorem 4. Let Y be a holomorphically separable reduced complex space, K a con-
nected compact Lie group acting on Y by holomorphic transformations, θ : K → K a
Weyl involution, and µ : Y → Y a θ-equivariant antiholomorphic involution of Y , i.e.,
µ(ky) = θ(k)µ(y) for all k ∈ K, y ∈ Y . Then O(Y ) is multiplicity free if and only if
µ(y) ∈ Ky for all y ∈ Y .
Sketch of proof. It suffices to proof the ”only if” statement. Applying Stone-Weierstrass
theorem to the algebra A(Y ) = O(Y ) · O(Y ) and using the averaging process over K,
one can find a special family {Fλ} ⊂ A(Y )K , which separates K-orbits. Namely, each
Fλ is contained in Wλ · Wλ, where λ is a highest weight and Wλ is the corresponding
irreducible submodule occuring in O(Y ) (with multiplicity 1). Due to the equivariance
of µ with respect to the Weyl involution, the image of Wλ under µ is precisely Wλ. From
this and from the fact that that µ composed with complex conjugation preserves a K-
invariant Hermitian product on Wλ, it follows that each Fλ is µ-invariant. Therefore µ
preserves each K-orbit. �
5. In this section, we state and partly prove our main results. A real structure on a
complex algebraic variety X is an involutive isomorphism onto the conjugate variety X.
Such an isomorphism is often regarded as an antiholomorphic involution µ : X → X,
taking local regular functions to local conjugate regular functions.
Theorem 5. Let G be a connected complex reductive group, X a non-singular affine
spherical G-variety, and σ : G → G an antiholomorphic involution defining the split
real form. Then X has a σ-equivariant real structure.
Theorem 6. Let K be a connected compact Lie group, θ : K → K a Weyl involution,
and Y a Stein manifold on which K acts by holomorphic transformations. Assume that
Y is spherical with respect to K. Then there exists a θ-equivariant antiholomorphic
involution µ : Y → Y . Any such involution µ preserves each K-orbit on Y .
Theorem 7. Let Y be a Stein manifold on which a connected compact Lie group K
acts by holomorphic transformations. Then Y is spherical if and only if there exists an
antiholomorphic involution µ : Y → Y , preserving each K-orbit.
Proof of Theorem 7. If there exists µ with the above properties then, according to the
result of J.Faraut and E.G.F.Thomas, O(Y ) is a multiplicity free K-module. Since Y is
a Stein manifold, it follows from [3] that Y is spherical. The converse statement results
from Theorem 6. �
Proof of Theorem 6. There is a K-equivariant open embedding ι : Y ↪→ X, where X
is an affine spherical variety of the complexified group G = KC. Moreover, according
to [3], the embedding ι : Y ↪→ X can be chosen in such a way that G · ι(Y ) = X.
Therefore X is non-singular. By Theorem 6 we have an antiholomorphic involution
µ : X → X, which is σ-equivariant with respect to G. Since σ and θ agree on K, µ is
θ-equivariant with respect to K. By Theorem 4, µ preserves each K-orbit. Therefore,
ι(Y ) is µ-invariant, and we get µ : Y → Y by restriction. �
Proof of Theorem 5. A well-known application of Luna’s Slice Theorem displays X as a
vector bundle. Namely, it is shown in [7] that

X = G ×H V,
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where H is a spherical reductive subgroup of G and V is a spherical H-module. We
sketch the proof for H connected and refer to [1] for the general case. We may assume
that L ⊂ H and K ⊂ G are chosen and that θ, τ and σ are constructed as in the proof
of Theorem 3. Assume we have an antilinear involution ν : V → V , satisfying

ν(hv) = σ(h)ν(v) (∗)

for all h ∈ H, v ∈ V . Consider the antiholomorphic involution µ̃ : G × V → G × V ,
defined by

µ̃(g, v) = (σ(g), ν(v)).

For h ∈ H let th(g, v) = (gh−1, hv). Then th, h ∈ H define an action of H on G × V ,
and X is the geometric quotient with respect to this action. It follows from (∗) that
µ̃ · th = tσ(h) · µ̃. Thus µ̃ gives rise to a self-map µ : X → X. Clearly, µ is an
antiholomorphic involution with the required property.

In order to find an antilinear involution ν : V → V satisfying (∗), recall that H and
L are connected. Since θ defines a Weyl involution of L, it follows that the L-modules
V (the complex conjugate) and V θ (the θ-twisted module) are isomorphic. In other
words, there is an antilinear isomorphism ν : V → V , such that

ν(lv) = θ(l)ν(v) (∗∗)

for all l ∈ L, v ∈ V . It remains to find an involution with the same properties. This is
reduced to an irreducible representation. Take a maximal (compact) torus T ⊂ L, on
which θ acts as inversion. There is a weight vector v ∈ V , such that the corresponding
weight λ : T → C∗ has multiplicity one. For the map ν constructed above and for t ∈ T
we have

t−1ν(v) = θ(t)ν(v) = ν(tv) = ν(λ(t)v) = λ(t)ν(v),

or, equivalently,
tν(v) = λ(t)ν(v).

Therefore ν(v) = av, where a ∈ C∗. Applying ν again, we get ν2(v) = |a|2v. Since V
is irreducible and ν2 is an automorphism of V commuting with the group action, we
have ν2 = |a|2 · Id by Schur’s Lemma. Replacing ν by |a|−1ν, we obtain an antilinear
involution with the property (∗∗) which is equivalent to (∗). �
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